
PERSPECTIVE
published: 10 January 2022

doi: 10.3389/fmars.2021.767443

Frontiers in Marine Science | www.frontiersin.org 1 January 2022 | Volume 8 | Article 767443

Edited by:

Laura Lorenzoni,

National Aeronautics and Space

Administration (NASA), United States

Reviewed by:

Lachlan McKinna,

Go2Q Pty Ltd, Australia

Jochen Wollschläger,

University of Oldenburg, Germany

*Correspondence:

Sophie Clayton

sclayton@odu.edu

Harriet Alexander

halexander@whoi.edu

Specialty section:

This article was submitted to

Ocean Observation,

a section of the journal

Frontiers in Marine Science

Received: 30 August 2021

Accepted: 06 December 2021

Published: 10 January 2022

Citation:

Clayton S, Alexander H, Graff JR,

Poulton NJ, Thompson LR,

Benway H, Boss E and Martiny A

(2022) Bio-GO-SHIP: The Time Is

Right to Establish Global Repeat

Sections of Ocean Biology.

Front. Mar. Sci. 8:767443.

doi: 10.3389/fmars.2021.767443

Bio-GO-SHIP: The Time Is Right to
Establish Global Repeat Sections of
Ocean Biology

Sophie Clayton 1*, Harriet Alexander 2*, Jason R. Graff 3, Nicole J. Poulton 4,

Luke R. Thompson 5,6, Heather Benway 7, Emmanuel Boss 8 and Adam Martiny 9,10

1Department of Ocean and Earth Sciences, Old Dominion University, Norfolk, VA, United States, 2Department of Biology,

Woods Hole Oceanographic Institution, Woods Hole, MA, United States, 3Department of Botany and Plant Pathology,

Oregon State University, Corvallis, OR, United States, 4 Bigelow Laboratory for Ocean Sciences, East Boothbay, ME,

United States, 5Northern Gulf Institute, Mississippi State University, Starkville, MS, United States, 6Ocean Chemistry and

Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric

Administration, Miami, FL, United States, 7Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic

Institution, Woods Hole, MA, United States, 8 School of Marine Sciences, University of Maine, Orono, ME, United States,
9Department of Earth System Science, University of California, Irvine, Irvine, CA, United States, 10Department of Ecology and

Evolutionary Biology, University of California, Irvine, Irvine, CA, United States

In this article, we present Bio-GO-SHIP, a new ocean observing program that will

incorporate sustained and consistent global biological ocean observations into the

Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of

Bio-GO-SHIP is to produce systematic and consistent biological observations during

global ocean repeat hydrographic surveys, with a particular focus on the planktonic

ecosystem. Ocean plankton are an essential component of the earth climate system,

form the base of the oceanic food web and thereby play an important role in influencing

food security and contributing to the Blue Economy. Despite its importance, ocean

biology is largely under-sampled in time and space compared to physical and chemical

properties. This lack of information hampers our ability to understand the role of plankton

in regulating biogeochemical processes and fueling higher trophic levels, now and in

future ocean conditions. Traditionally, many of the methods used to quantify biological

and ecosystem essential ocean variables (EOVs), measures that provide valuable

information on the ecosystem, have been expensive and labor- and time-intensive,

limiting their large-scale deployment. In the last two decades, new technologies have

been developed and matured, making it possible to greatly expand our biological ocean

observing capacity. These technologies, including cell imaging, bio-optical sensors and

’omic tools, can be combined to provide overlapping measurements of key biological

and ecosystem EOVs. New developments in data management and open sharing can

facilitate meaningful synthesis and integration with concurrent physical and chemical

data. Here we outline how Bio-GO-SHIP leverages these technological advances to

greatly expand our knowledge and understanding of the constituents and function of

the global ocean plankton ecosystem.
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1. INTRODUCTION

The physics, chemistry, and biology of the ocean system are
irrevocably interlinked. Marine life and biological processes,
particularly within the plankton, drive the global biogeochemical
cycling of climatically-important elements (e.g., C, O, N, P, Si, Fe).
Additionally, phytoplankton form the base of the oceanic food
web accounting for roughly half of global primary productivity
(Field et al., 1998) and underpinning an important part of the
Blue Economy which is projected to be worth $3 trillion by
2030 (Rayner et al., 2019; Estes et al., 2021). The measurement
and chronicling of physical (e.g., salinity and temperature) and
chemical ocean properties (e.g., dissolved oxygen, the carbonate
system and nutrients) have been broadly and systematically
incorporated into global repeat surveys for many decades.
By comparison, ocean life and biological processes, which
directly contribute to sustaining valuable ocean fisheries, are
chronically under-sampled in both time and space, with the
notable exception of satellite-derived estimates of near-surface
phytoplankton biomass (McClain, 2009; Siegel et al., 2013). As
a result of this under-sampling, many important questions in
oceanography remain unanswered, and our ability to observe and
detect marine ecosystem responses to global climate change is
restricted (Mieszkowska et al., 2014).

A globally consistent effort to quantify and study
plankton communities across ocean basins will transform
our understanding of plankton biogeography, marine food webs,
and the biological regulation of elemental cycles. To date, the
majority of survey programs have focused on “bio-discovery,”
targeting unique ocean environments in order to generate a
catalog of ocean life, leading to the discovery of new biodiversity
by the Global Ocean Sampling Expedition (Rusch et al., 2007),
Tara Oceans (Carradec et al., 2018), andMalaspina (Salazar et al.,
2015; Acinas et al., 2019). It has been recognized that a central
need exists to coordinate and merge observations of biology with
concurrently measured physical and chemical properties across
large spatial and temporal scales in order to study and model
feedback loops between plankton ecosystems and chemical
and physical ocean processes. Consistent and fully integrated
observations will provide a beyond-baseline understanding
of global plankton and pelagic organism biogeography, the
biological regulation of particle composition and elemental
stoichiometry, linking surface plankton diversity with the
downward particle flux and C storage, and the regulation of deep
ocean biodiversity. We also envisage that biological tracers such
as microbial community composition in the deep ocean will
help to uncover physical transport pathways that are not well-
constrained by hydrographic observations alone. With sustained
observations, we will be able to identify how characteristic shifts
in ocean plankton communities may act as “biosensors” for
ocean changes (Ustick et al., 2021).

In this paper, we outline a plan for Bio-GO-SHIP1, a globally
consistent biological ocean observing program that integrates
the latest observing technologies into an existing program
(Sloyan et al., 2019). Integrating Bio-GO-SHIP within the

1http://biogoship.org/

existing Global Ocean Ship-based Hydrographic Investigation
Program (GO-SHIP)2 naturally bridges physical, chemical, and
biological measurements. This synergy has the potential to
progressively inform our understanding of plankton biodiversity,
the impacts of plankton community structure and activity on
chemical inventories, and the physical connectivity between
communities residing in apparently distinct oceanic provinces.
By integrating existing mature observational technologies, Bio-
GO-SHIP directly addresses the existing data gap in the
measurement of biological and ecosystem EOVs which is
hampering our ability to understand the role of the plankton
ecosystem in the global climate system, the carbon cycle,
and marine food webs. Below we highlight existing and
new technologies that meet the demands of Bio-GO-SHIP
and discuss aspects of data management and community
access. Finally, we describe how repeat biological sections
fit into and augment existing ocean observing systems, and
how they will support future developments of autonomous
observing platforms.

2. GLOBAL REPEAT HYDROGRAPHIC
SURVEYS

2.1. Physical and Biogeochemical
Oceanographic Surveys
GO-SHIP is the most recent iteration in a series of global
hydrography programs dating back to the Geochemical Ocean
Sections Study in the 1970s (GEOSECS; Moore, 1984), followed
in the late 1980s by the Joint Global Ocean Flux Study
(JGOFS; Fasham et al., 2001), and the World Ocean Circulation
Experiment in the 1990s (WOCE; Woods, 1985). The principal
scientific objectives for long-term ship-based repeat hydrography
programs have two closely linked components. Firstly, they aim
to understand and document the large-scale distribution of ocean
properties, their changes, and the drivers of those changes.
Secondly, they assess the functioning of a warmer and more
stratified ocean with increased dissolved inorganic carbon (DIC),
lower pH, changes in circulation and ventilation processes,
altered water cycle, and shrinking sea-ice. GO-SHIP organizes
a global repeat-occupation effort, whereby most major ocean
regions are sampled every decade in order to observe global
changes. The program coordinates concurrent measurements of
a suite of key physical and chemical essential ocean variables
(EOVs) throughout the full ocean water column. While GO-
SHIP is an international program, it is funded and executed
nationally. Key to GO-SHIP’s success is international agreement
between the national partners on standard data collection and
curation methods and protocols.

GO-SHIP’s repeat decadal observations of ocean physics and
chemistry have provided critical constraints on anthropogenic
changes in ocean heat content (Roemmich et al., 2007; Purkey
and Johnson, 2010; Waugh et al., 2013), penetration of carbon
(Gruber et al., 2019), shoaling of the calcium carbonate saturation
depth (Feely et al., 2004), and loss of oxygen (Schmidtko

2http://go-ship.org/
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et al., 2017), all of which have direct and serious implications
for ocean life. Unfortunately, routine measurements of EOVs
to characterize life in the ocean—including its composition,
abundance, and changes in distribution—which are fundamental
to our understanding ofmarine ecosystems (Lombard et al., 2019;
Boss et al., 2020) are missing. Integrating routine measurements
of biological and ecosystem EOVs into global repeat sections
represents an important step forward for developing both a
holistic understanding of the functioning of marine ecosystems,
and a baseline from which changes over the coming decades can
be observed.

2.2. Recent Scientific Advances Enabled by
Biological Sampling on Repeat Sections
The increasing availability of mature technologies to measure
key biological EOVs offers a unique opportunity for a truly
integrated, global repeat sampling program. One example is
the Atlantic Meridional Transect (AMT), which is a repeat
transect spanning the Atlantic Ocean (Robins and Aiken, 1996).
The AMT Program has incorporated routine measurements of
biological EOVs since its inception in 1995 and serves as a model
for integrating biological data collection into repeat surveys.
Data from the AMT Program has revealed relationships between
the phytoplankton size distribution and nutrient concentrations
across large scale oceanic gradients (Cermeno et al., 2008).
Another significant finding enabled by AMT data, was that
scattering measured from space, contrary to expectations, is
primarily caused by particles > 1µm (Organelli et al., 2018).
These insights into the links between plankton communities,
particle dynamics and biogeochemical cycles from the AMTwere
only possible thanks to the combination of in situ biological
sampling and bio-optical measurements.

There have been a number of biological efforts in collaboration
with the GO-SHIP program during the last 5 years on cruises
to the Atlantic, Indian, and Pacific Oceans (Larkin et al., 2021).
These GO-SHIP transects incorporating biology have allowed
for a systematic analysis of large-scale gradients in plankton
genomic diversity. The most abundant marine phytoplankton,
Prochlorococcus, has been shown to adapt to nutrient availability
through gene gains and losses (Coleman and Chisholm, 2010).
This biological feature was applied as a living biosensor for the
elemental type and severity of nutrient stress, and combined with
complementary chemical and hydrographic data highlights the
feedbacks between marine microbial metabolisms, hydrography
and ocean biogeochemistry (Figure 1, Ustick et al. 2021).
This analysis is supported by past nutrient-amendment bottle
experiments and models (Moore et al., 2013), but also has
uncovered many previously unrecognized regions of nutrient
stress, suggesting that nutrient stress biogeography might be
tied to shifts in vertical mixing and the aeolian supply of iron
(Martiny et al., 2019). Genomic data has also been used to
infer variations in C cycling strategies between ocean regions
(Raes et al., 2021). Finally, plankton biodiversity patterns
observed in these studies significantly diverged from current
theoretical predictions suggesting that we still lack a fundamental

understanding of the drivers of planktonic biodiversity (Raes
et al., 2018).

The elemental stoichiometry of ocean ecosystems is of
fundamental importance to many biogeochemical processes such
as the biological pump, nitrogen fixation, and the transfer of
elements to higher trophic levels. Measurements of particulate
organic matter on GO-SHIP transects demonstrated a clear
latitudinal gradient in C:N:P (Garcia et al., 2018; Lee et al., 2021).
Detailed hydrographic measurements from sections showed
that ecosystems with a deep nutricline had elevated C:N
and C:P. Furthermore, it was shown that shifts in genomic
markers captured the impact of cellular nutrient limitation
on C:N:P (Garcia et al., 2020). Finally, samples from GO-
SHIP provided the first large-scale estimate of the carbon-to-
oxygen remineralization ratio (Moreno et al., 2020). These efforts
included using genomics to identify ecosystem functions and
biodiversity patterns, the elemental stoichiometry of marine
ecosystems, and the biogeography of the biological pump.
Common to all these efforts are the clear linkages and integration
between physical, chemical and biological observations.

2.3. What Is Bio-GO-SHIP?
Bio-GO-SHIP builds on the success of the previous efforts
described above to establish an integrated biological observing
program tied to the core GO-SHIP program. Crucial to this
effort are the recommendations of the recently-convened SCOR
Working Group 154 (“Integration of Plankton-Observing Sensor
Systems to Existing Global Sampling Programs”; Boss et al. 2018)
who assessed the feasibility of integrating different observational
approaches for measuring biological and ecosystem EOVs into
sustained global ocean observation programs, with a particular
focus on GO-SHIP. Bio-GO-SHIP has been launched as a
pilot project with funding from NOAA and NASA through
the National Oceanographic Partnership Program. Although
initially a US-based initiative, one of the goals of Bio-GO-SHIP
is to develop and test standard community-approved protocols
for global biological observations that can be applied broadly.
Standard observational protocols, as already being employed
in programs such as GeoTraces (Anderson et al., 2014), allow
for the comparison and integration of data on biological EOVs
across scientific cruises. This is currently not possible for many
biological and ecosystem EOVs due to differing protocols.
By leveraging the ship-time already committed for GO-SHIP
sections, and by using sensors and instruments that can produce
high-throughput underway data in conjunction with discrete
sample collection, Bio-GO-SHIP is a cost-effective program that
will likely add less than ∼ 10% to the current operating costs of
GO-SHIP and result in a large return on investment in terms of
new scientific insights.

3. TECHNOLOGICAL ADVANCES FOR
SUSTAINED GLOBAL BIOLOGICAL
OBSERVATIONS

Detailed observations of the biological components of marine
planktonic ecosystems have historically been restricted to
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FIGURE 1 | Synergy of biological, hydrographic and chemical data collected during the GO-SHIP P18 repeat section uncovers patterns and drivers of nutrient stress

in Prochlorococcus. The upper two panels panel show the high and medium stress composite metrics (�) for N, Fe, and P (taken from Ustick et al., 2021). The

bottom panel shows the nitrate concentration (µmol/kg) in the upper 500 m along the P18 transect with density contours (black contour lines). There is a clear

relationship between the severity of N stress in Prochlorococcus and the depth of the nitracline. The P18 section is highlighted in red in Figure 2.

targeted process studies of limited duration and spatial extent,
such as the North Atlantic Aerosols and Marine Ecosystems
Study (NAAMES; Behrenfeld et al., 2019; Penna and Gaube,
2019) and EXport Processes in the Ocean from Remote Sensing
(EXPORTS; Siegel et al., 2016), or long term ocean time series
including the Hawaii Ocean Timeseries (HOT; Karl and Church,
2014), the Bermuda Atlantic Time Series (BATS; Michaels and
Knap, 1996), the CArbon Retention In A Colored Ocean Time-
Series Program (CARIACO; Muller-Karger et al., 2019), and

the Continuous Plankton Recorder Survey (Batten et al., 2019).
Barriers to global-scale extended studies include the expense
and labor involved with collecting, processing, and analyzing
biological samples and associated properties. However, over the
last two decades, many biological observational technologies have
matured, been ground-tested and broadly applied, and are now
capable of affordable and high-throughput sampling, making
it feasible to mount a global biological sampling program in
conjunction with existing repeat hydrographic survey programs.
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Additionally, by creating a consistent and community vetted
protocols for global biological observations, we will be able to
compare results across scientific cruises, which is currently not
possible due to divergent observational protocols. For the first
time, these observational tools coupled with consistent protocols
and analytical pipelines, will make routine global repeat sections
of biological and ecosystem EOVs a reality (Bojinski et al., 2014;
Miloslavich et al., 2018).

3.1. Scaling Up the Measurement of
Biological and Ecosystem EOVs
Within the changing ocean environment, a baseline of sustained,
consistent measurements is central to our ability to study,
characterize, and monitor patterns in biodiversity and the
downstream impacts of that diversity on ecosystem and
biogeochemical processes. The GO-SHIP program currently
includes the routine sampling of several biogeochemical EOVs,
including dissolved oxygen, nutrients, dissolved organic carbon,
and pCO2 (Sloyan et al., 2019). Here we provide a brief overview
of the technologies and sampling strategies that will be included
in the Bio-GO-SHIP program to study planktonic ecosystems,
with a focus on biological EOVs central to pelagic ecosystems:
specifically microbial, phytoplankton, zooplankton, and fish
biomass and diversity (Miloslavich et al., 2018). By combining
multiple sampling strategies, we plan to measure these variables
in overlapping and complementary ways (Figure 2).

Microbial communities (comprised of prokaryotic and
eukaryotic microbes and viruses) are centrally important to the
functioning of the ocean. Using a combination of particulate,
’omic, and optical measures, we will be able to track their
(relative) biomass and taxonomic composition. Flow cytometry
will be used to target the smallest class of cells (0.5–10 µm),
from which we can quantify cell numbers and extrapolate
biomass, as well as coarse taxonomic composition. ’Omics are
a well-developed and broadly used set of approaches to assess
the diversity and function of microbial communities (Gilbert
and Dupont, 2011; Sunagawa et al., 2015; Ustick et al., 2021).
Metabarcoding, targeting conserved genes such as 16S or 18S,
and shotgun metagenomics, which randomly samples DNA from
the environment, shed light on the taxonomic composition
of the microbial communities. Metatranscriptomics, which
randomly samples the RNA from the environment, both provide
information on the taxonomic and functional potential and a
proxy for activity of the community.

Phytoplankton diversity, biomass and physiology will be
assessed using a combination of ’omic, optical, and particulate
measures. Phytoplankton span a wide range of size classes from
< 1µm to > 2000µm (Finkel et al., 2009), necessitating the
combination of multiple optical tools (flow cytometry, imaging
flow cytometry, video imaging) to fully sample and estimate
their contribution to biomass and cell size distribution (Lombard
et al., 2019). By integrating bio-optical measures of fluorescence,
absorption and backscatter at multiple wavelengths (e.g., SeaBird
flbb, AC-S, and bb3) and Fast Repetition Rate Fluorometry
(FRRF), we can also get information on the taxonomic
composition of the community and their photo-physiological

status (Vaillancourt, 2004; Suggett et al., 2009; Organelli et al.,
2017). All of this Bio-GO-SHIP data will be critical to enable
the testing of algorithms for biological (e.g., phytoplankton
size distribution, PSD; phytoplankton function types, PFT)
and biogeochemical (e.g., POC, primary productivity) proxies
from remote sensing data, to refine them and to eventually
produce better ones, particularly with the upcoming launch of
the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
(Werdell et al., 2019). As with the heterotrophic microbial
communities, ’omics provide a window into the fine-scale
taxonomic and functional diversity of the eukaryotic plankton.
In particular, 18S amplicon data has been successfully used
to delineate protistan diversity within communities (de Vargas
et al., 2015), while metatranscriptomics can reveal community
function, activity and metabolism (Marchetti et al., 2012;
Alexander et al., 2015; Carradec et al., 2018).

Pelagic consumers, fish and zooplankton, are central to
supporting higher trophic levels, including humans. Given the
increasing patchiness with organism size within the pelagic
environment, common sampling techniques include extended
trawling or net-based collections (e.g., MOCNESS). Such tools
require a significant time investment and may not always be
feasible on GO-SHIP or similar survey efforts. Rather, there are
a variety of techniques that can be applied to derive proxies for
abundance and taxonomic composition including imaging (e.g.,
Underwater Vision Profiler, UVP), acoustics and environmental
DNA (eDNA). Active acoustics can be used to assess the
abundance and community composition of large zooplankton
and small fish (Howe et al., 2019). eDNA metabarcoding,
a method which has become more commonly used in the
conservation and ecological fields, amplifies marker genes to
assess and estimate the presence and relative abundance of larger
organisms (read: animals and multi-cellular plants) based on
sloughed cells (Thomsen et al., 2012; Suter et al., 2020).

3.2. Synergy Between Diverse Data Types
Each of the tools detailed above provide information on a
particular property of the pelagic ecosystem that can be used to
answer specific questions in oceanography: e.g., metabarcoding
quantifies species composition, flow cytometry can illuminate
shifts in community size structure over space and time, and
bio-optics can used to infer rates of primary productivity
underway. More so, it is in the combination and integration
of multiple tools and approaches (and resulting combined
datasets) that a more coherent understanding of the functioning
of the ocean ecosystem can be built. As can be seen from
the observational tools listed above, these distinct sampling
approaches and technologies often result in overlap for quantities
of interest (Figure 2). For instance, particle size data produced
by multiple approaches or instruments [e.g., Laser In-Situ
Scattering and Transmissometery (LISST), Flow Cytometry
(FCM), Imaging Flow Cytobot (IFCB)] overlap across a portion
of their datasets and provide a plankton size distribution
ranging from microbes to large phytoplankton that could not
be achieved from single instrument (Lombard et al., 2019).
Multiple methodsmight be used to assess the taxonomic diversity
of a community, with metabarcoding and metagenomics
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FIGURE 2 | Biological sampling to be incorporated into GO-SHIP. The upper panel shows the GO-SHIP repeat sections overlain on global mean Chlorophyll (mg m−2)

obtained from a MODIS mission composite spanning 2002–2021. Section P18 from which the data in Figure 1 was collected is highlighted in red. Highlighted in

orange are sections I05, P02, and A13.5, which will be the first sections fully sampled as part of the Bio-GO-SHIP program in 2022–2023. The lower panel

summarizes the key science questions that Bio-GO-SHIP addresses, the observational approaches and the range of different measurement types that will be used as

part of the Bio-GO-SHIP program.

describing presence, metatranscriptomics highlighting active
organisms, and high-throughput identifying the morphology.
Similarly, ’omics targeting of nutrient-related genes with either
metagenomics or metatranscriptomics can be combined with

fast repetition rate fluorometry (FRRF) and particulate C:N:P
to assess the dominant nutritional state of a community. Using
complimentary techniques will provide a more accurate and
comprehensive assessments of each EOV.
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3.3. Keeping Up With Advances in
Biological Oceanographic Sampling
Advances in ocean technologies drive new discoveries, but
maintaining pace with these advances is challenging and requires
the attention of the community. The existing technologies that
form the basis for the Bio-GO-SHIP program are currently
mature, with a Technology Readiness level (TRL) between 7
and 9. However, although we are currently employing mature
technologies, we are also anticipating the rapid development
within areas of biological sampling. This race to keep pace with
evolving technologies is particularly evident within the area of
’omics, as sequencing platforms rapidly shift and improve overall
sequencing yield and potential contiguous read length (Levy and
Myers, 2016). Looking only 10 years into the future, it is difficult
to imagine what our potential capabilities might be within this
sphere. As such, it is of paramount importance that we consider
ways to ensure that the sequencing data we collect now is forward
compatible with data we will collect 10 years from now. To ensure
that this is possible, we must consider the best practices for
intercalibration of these types of datasets. Additionally, there are
great benefits to “biobanking” samples and “databanking” images
for future analysis with the improved technology (Jarman et al.,
2018). The collection and storage of samples and images in this
way will be key to being able to detect future changes in the
ocean ecosystem.We also expect that there will be improvements
in bio-optics, imaging, cytometry and acoustics instrumentation
and analysis, but these are likely to be more incremental given the
relative maturity of those technologies.

Ship-based observations remain the “gold standard” in
oceanographic exploration. However, these efforts are costly,
and much effort has been put into developing autonomous
observation technologies. Moored arrays and autonomous
robotic instrumentation (e.g., Argo floats, gliders, and drifters)
have enabled continuous remote observation of several physical
oceanographic parameters (e.g., temperature, salinity, currents)
and show great promise for the collection of chemical and
biological data. Profiling Biogeochemical-Argo (BGC-Argo)
floats instrumented with sensors that collect biogeochemically
relevant measures including chlorophyll a, oxygen, nitrate, pH,
backscatter, and multispectral downwelling irradiance as part
of the Southern Ocean Carbon and Climate Observations and
Modeling (SOCCOM) and Global Ocean Biogeochemistry Array
(GO-BGC) programs, and whose data is comparable to those
collected via shipboard observation, is a good example of the use
of these technologies for biological investigations (Claustre et al.,
2020). There is potential for developing remote and automated
technologies to facilitate the collection of the biological data
we detail in section 3.1 above. In particular, autonomous
ecogenomic samplers, like the Environmental Sample Processor
(ESP) (Scholin et al., 2017), have already demonstrated the
possibility to sample DNA or RNA remotely (Ottesen et al.,
2013). Additionally, new platforms that facilitate the fine-scale
sampling of dissolved and particulate seawater biochemistry
along vertical profiles, such as Clio (Breier et al., 2020), stand to
expand the potential of automated collection of these parameters
and decrease required ship time. Rigorous calibration and

validation of such autonomous biological observing platforms
will be key in their successful development and deployment. GO-
SHIP cruises are currently used as a platform not only for the
deployment of BGC-Argo profiling floats, but also provide key
data for subsequent validation of the data provided by the on-
board biogeochemical sensors and sampling (Bittig et al., 2019).
We envision that Bio-GO-SHIP will provide similar synergies
for deploying new automated biological sensors and, thus,
accelerate the development and adoption of remote biological
observational strategies.

4. CHALLENGES AND OPPORTUNITIES
FOR DATA MANAGEMENT AND
INTEGRATION

Developing guidelines for the use of and consistent analysis
of data produced by the technologies described above has
been the focus of several working groups in recent years. This
includes the SCOR WG 154 report (Boss et al., 2018, 2020),
an Ocean Carbon Biogeochemistry (OCB)-sponsored small
working group on Phytoplankton Taxonomy (“Data Standards
and Practices for Taxon-Resolved Phytoplankton Observations,”
Neeley et al., 2021), and an OCB-sponsored working group
on Ocean Nucleic Acids ’Omics Intercalibration3. Although
invaluable in building understanding, individual data types
provide only a limited view of the whole system. Here, we
outline an integrated approach to synthesizing physical and
chemical oceanographic data (temperature, salinity, density,
velocity, vertical profiles) with continuous (e.g., optics) or
discrete (e.g., omics, FCM, particulate nutrients) biological
measures. Beginning to holistically integrate these different data
types will help us address fundamental questions in biological
oceanography, inform the development of new biogeochemical
models and enable their validation (Lombard et al., 2019). With
increasing, high resolution biological measurements across the
global ocean, the application of machine learning approaches to
enable faster processing of data (e.g., the classification of images
of plankton, Gonzalez et al., 2019), enable better extrapolation
of processes in time and space (e.g. Flombaum et al., 2013;
Selden et al., 2021) and ultimately allow for the interrogation of
feedbacks between ocean physics, chemistry and biology.

4.1. Data Management and Sharing to
Enhance Data-Driven Discovery Across the
Community
Data sharing and dissemination is a challenging aspect of large-
scale programs, like Bio-GO-SHIP, that collect high volumes of
diverse data types. A first order issue is ensuring that all the
data generated through the Bio-GO-SHIP program aligns with
FAIR (Findable, Accessible, Interoperable, and Reusable) data
management practices (Wilkinson et al., 2016). There is also
a need to align this data with existing conventions in ocean
and biological sciences (e.g., EOVs, ECVs, taxonomy). More

3https://www.us-ocb.org/ocean-nucleic-acids-omics-workshop/
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so, ensuring that integrated, linked metadata with consistent
vocabularies is present will be crucial. Additionally, as the
program grows and develops, samples will be taken by many
different individuals, so methodological documentation, data
quality control, and intercalibration will be important.

There are many good models of data management and data
sharing within the oceanographic community (e.g. Bowie and
Tagliabue, 2018; Acinas et al., 2019). In particular, Tara Oceans
implemented a highly successful system for data management
and accessibility through a combination of robust collection of
linked metadata and user-focused curated final data products
made available alongside the raw data products (Villar et al.,
2018). GO-SHIP’s success in facilitating new scientific discoveries
has been largely supported by a clear, consistent and well-
documented set of data requirements and data submission
timelines and policies4. GO-SHIP ranks data as being Level 1,
2, or 3, with Level 1 data being the highest priority for all
GO-SHIP cruises. Level 2 data are highly desirable and should
be collected when possible, and Level 3 data are considered
ancillary and should only be collected if this can be done
without interfering with the collection of the higher priority data.
Biological measurements which are currently made as part of
the GO-SHIP program (e.g., chlorophyll, HPLC pigments and
primary production) are considered to be Level 3 measurements.
It is envisaged that the Bio-GO-SHIP effort will raise some
biological measurements to Level 2, and some eventually to
Level 1. Bio-GO-SHIP will employ data management strategies
used by these groups and integrate data-platforms to conform
to the current best practices in data management and data
requirements within the oceanographic community. Given the
wide range of data types produced by the Bio-GO-SHIP program,
the data will inevitably be curated within several data repositories
(e.g., GenBank, BCO-DMO, CCHDO, NASA SeaBASS, OBIS).
However, the Bio-GO-SHIP website provides a central repository
that describes all of the data, lists its locations and DOIs and
ensures redundancy for data discovery and access.

5. WHERE DOES BIO-GO-SHIP FIT INTO
THE GLOBAL OCEAN OBSERVING
SYSTEM?

A mechanistic and coherent understanding of ecosystems and
the capacity for marine organisms to evolve is crucial in
light of climate change. While there are many well-developed
physical-chemical ocean observing campaigns (e.g., GO-SHIP,
GeoTraces, OSNAP, RAPID), few programs have incorporated
the systematic collection of biological data across the global
ocean. Tara Oceans, Malaspina, and the Global Ocean Survey
represent a proof of concept and showcase the potential of
global scale biological data collection. Still, a routine biological
component of the global ocean observing system has yet to be
established. The importance of biological measures at a global
scale is undeniable and recognized as such by the Global Ocean
Observing System (GOOS) EOVs. Thematuration of sequencing,

4https://www.go-ship.org/DatReq.html

bio-optical, and high-throughput imaging technologies over the
past two decadesmake global-scale systematic repeated biological
observations tractable.

Ultimately, we envision that Bio-GO-SHIP will not be unique
or operate in isolation and the more frequently these types of
biological observations are incorporated into global-scale studies
(e.g., BioGeoTraces, Biller et al., 2018) the better. The scientific
community studying these highly complex and dynamic systems
will benefit from greater volumes of consistent, high-quality
data. More measurements, regardless of the program name, will
ultimately accelerate discovery. A key component of the Bio-GO-
SHIP program, as with GO-SHIP, is the goal to rapidly generate
open access data for the community. Open data democratizes
the scientific process and allows for greater participation in
oceanography within and beyond the scientific community.

Bio-GO-SHIP augments the existing GO-SHIP program by
collecting core biological measurements in a globally consistent
and integrated program. Building on preceding biological
survey programs and incorporating the use of high-throughput
underway sampling, optical and imaging systems, Bio-GO-SHIP
will generate data at higher spatial resolution than is typically
achieved in other global scale sampling programs. The program
is being developed in a highly interdisciplinary environment,
working directly with physical and chemical oceanographers to
scale up the biological observational strategies generally reserved
for targeted process studies to global scale repeat sections. The
technologies now exist to expand the core measurements of
global hydrographic programs to build our understanding of
interacting physical-chemical-biological processes and feedbacks
that control and mediate the global biogeochemical cycles and
link surface and deep ocean ecosystems. Although difficult to
quantify, the benefits derived from making such consistent and
sustained biological ocean observations will likely far outweigh
the cost of establishing and maintaining the Bio-GO-SHIP
program into the future (Rayner et al., 2019).
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